

Large-scale Coordinated Platooning of Heavy-duty Vehicles

Jeffrey Larson Christoph Kammer Kuo-Yun Liang Karl H. Johansson

KTH Royal Institute of Technology JANUARY 17, 2014

Problem Statement

Goal

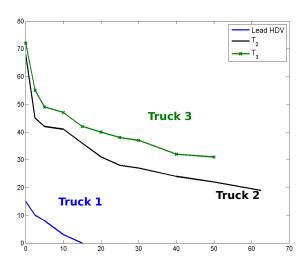
minimize Total Fuel Use such that Vehicles Arrive on Time

Using the fact that vehicles travelling in a platoon consume less fuel than when travelling independently

What is a Platoon?

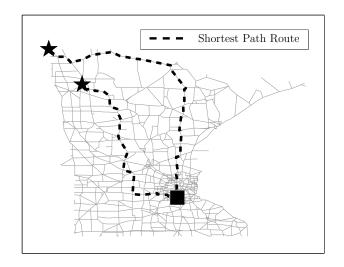
What is a Platoon?

What is a Platoon?



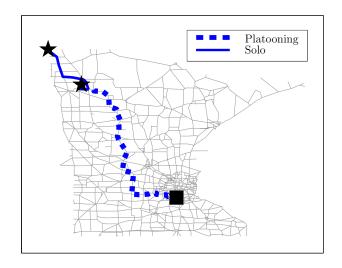
Approximately 30% of an HDV's life costs is fuel.

Platooning Fuel Savings

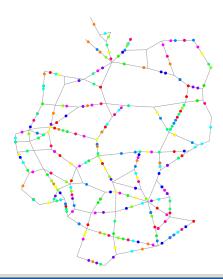


Previous Work

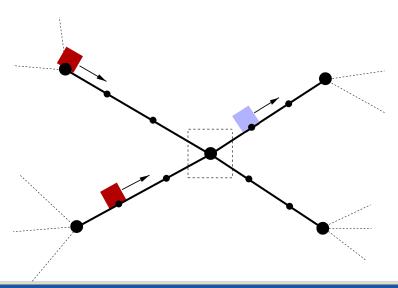
- 1966 W. Levine and M. Athans, "On the Optimal Error Regulation of a String of Moving Vehicles"
- 1995 M. Zabat, N. Stabile, S. Farascaroli, F. Browand, "The Aerodynamic Performance Of Platoons" UC Berkeley: California Partners for Advanced Transit and Highways (PATH)
- 2010 T. Robinson, E. Chan, and E. Coelingh, "Operating Platoons on Public Motorways: An Introduction to the SARTRE Platooning Programme"



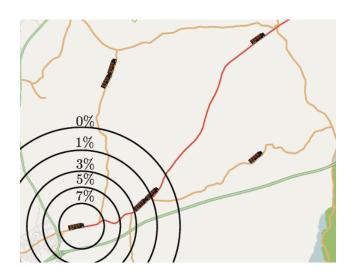
Fundamental Concept



Fundamental Concept



Difficult Problem



Local Controller

Catching Up

Pseudocode

Algorithm: Logic for the local controller

if Approaching HDVs can feasibly adjust their speeds to form a platoon then

if Test of sufficient savings then

Inform the HDVs to adjust their speeds to form a platoon

end

end

Pseudocode

Algorithm: Logic for the local controller

if Approaching HDVs can feasibly adjust their speeds to form a platoon then if Test of sufficient savings then

Inform the HDVs to adjust their speeds to form a platoon

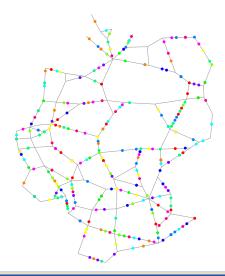
end

end

Notation:

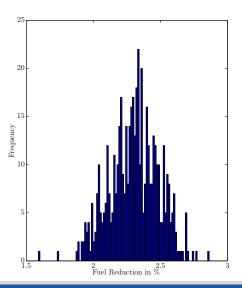
- Represent our network with a graph G = (V, E).
- Denote the control node s and let d_n be the destination for HDV n.
- Let D(i,j) be the fuel used travelling from vertex i to vertex j.
- Let m_n be the allowed detour for HDV n.
- Let n be the percentage of fuel saved by platooning.

Pseudocode

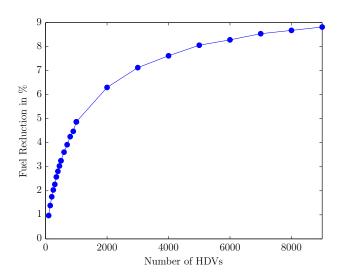

Algorithm: Savings calculation for two HDVs

end

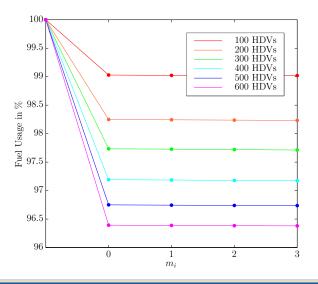
 $Savings = D(s, d_1) + D(s, d_2) - Best;$



Savings

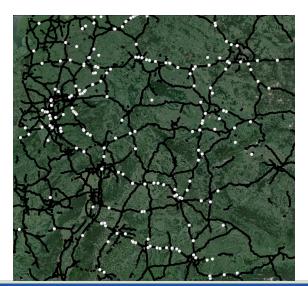


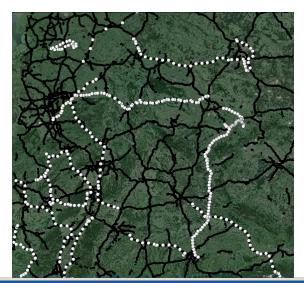
Savings



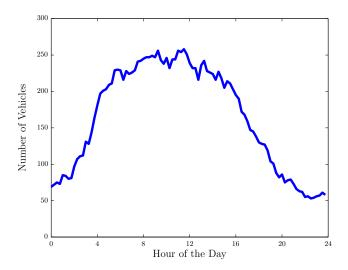
Savings

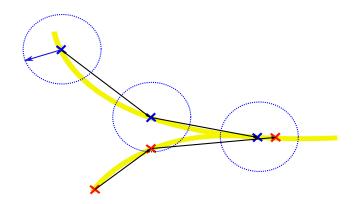
Increasing possible detours


Conclusion & Current Work


It is possible to reduce fuel use by 5% when coordinating $1000\ \text{HDVs}$ on the German Autobahn.

Work is ongoing:


- Platooning when traffic is time dependent.
- Accounting for breaks and legal requirements
- Continue with real-world experiments



- r = 0.2 km
 - o 78 out of 875 vehicles platooned at least once during their daily route.
 - $\circ~0.16\%$ of total fuel saved by the platooned vehicles.
 - 585 km platooning out of total 403,413 km driven.
- r = 1 km
 - 241 out of 875 vehicles platooned at least once during their daily route.
 - 0.38% of total fuel saved by the platooned vehicles.
 - 4,369 km platooning.
- r = 5 km
 - 778 out of 875 vehicles platooned at least once during their daily route.
 - 1.2% of total fuel saved by the platooned vehicles.
 - 43,325 km platooning.

Thank You

COMPANION EU Project: Cooperative Dynamic Formation of Platoons for Safe and Energy-optimized Goods Transportation

Scania, Volkswagen, KTH, OFFIS, IDIADA, S&T AS, Transportes Cerezuela

Thank You

COMPANION EU Project: Cooperative Dynamic Formation of Platoons for Safe and Energy-optimized Goods Transportation

Scania, Volkswagen, KTH, OFFIS, IDIADA, S&T AS, Transportes Cerezuela

 ${\sf Jeffrey\ Larson\ -\ jeffreyl@kth.se}$